Mathematics

# Read e-book online Algèbres de Lie libres et monoïdes libres : Bases des PDF

By G. Viennot

ISBN-10: 0387090908

ISBN-13: 9780387090900

ISBN-10: 3540090908

ISBN-13: 9783540090908

Read Online or Download Algèbres de Lie libres et monoïdes libres : Bases des algèbres de Lie libres et factorisations des monoïdes libres PDF

Best mathematics books

Reinhard Schuster's Biomathematik: Mathematische Modelle in der Medizinischen PDF

Die Phänomene in Medizin und Computational lifestyles Sciences lassen sich in wachsendem Maße mit mathematischen Modellen beschreiben. In diesem Buch werden Mechanismen der Modellbildung beginnend von einfachen Ansätzen (z. B. exponentielles Wachstum) bis zu Elementen moderner Theorien, wie z. B. unterschiedliche Zeitskalen in der Michaelis-Menten-Theorie in der Enzymkinetik, vorgestellt.

Extra info for Algèbres de Lie libres et monoïdes libres : Bases des algèbres de Lie libres et factorisations des monoïdes libres

Example text

Tr`es bien. Then I can find a by taking cube roots. I also can find b in the same way, or by using b = m/3a. Therefore, x = a − b is the solution to the cubic equation. Am I correct? Well, I substitute x into the original cubic equation and see if it’s true. I could ask Antoine-August to show my analysis to his tutor. He would tell me if I’m doing this correctly. Friday | September 25, 1789 Autumn is slowly making an entrance. The weather is so nice, and the colors of the foliage are changing. After lunch my sisters and I went for a stroll to the Jardin des Tuileries.

Master” — 2012/3/8 — 13:19 — page 35 — #47 ✐ ✐ 1. Awakening 35 What am I missing? I will not sleep well if I do not solve it. I will attempt a different approach. First I see that (a − b)3 + 3ab(a − b) = a3 − b3 . Then, if a and b satisfy 3ab = m, and a3 − b3 = n, then a − b is a solution of x3 + mx = n. Now b = m/3a, so a3 − m3 /27a3 = n, which I can also write as a6 − na3 − m3 /27 = 0. This is like a quadratic equation in a3 , (a3 )2 − n(a3 ) − (m3 )/27 = 0. So, I can solve for a3 using the formula for a quadratic equation.

Is this correct? Oh, how can I be certain? If a polynomial is a mathematical expression involving a series of powers in one or more variables multiplied by coefficients, then I can write a polynomial in one variable with constant coefficients as: an xn + · · · + a3 x3 + a2 x2 + a1 x + a0 = 0. The highest power in the polynomial is called its order. And it makes more sense if I write the polynomial as: x3 + 2x2 + 3x + 5 = 0. ✐ ✐ ✐ ✐ ✐ ✐ “master” — 2012/3/8 — 13:19 — page 20 — #32 ✐ ✐ 20 Sophie s' Diary Then I say that this is a third-order polynomial.